Estimates an unbiased VAR(1) using stochastic approximation (Bauer, Rudebusch and Wu, 2012)
Source:R/BiasCorrection.R
Bias_Correc_VAR.Rd
Estimates an unbiased VAR(1) using stochastic approximation (Bauer, Rudebusch and Wu, 2012)
Usage
Bias_Correc_VAR(
ModelType,
BRWinputs,
RiskFactors,
Economies,
FactorLabels,
GVARinputs = NULL,
JLLinputs = NULL,
verbose = TRUE
)
Arguments
- ModelType
A character vector indicating the model type to be estimated.
- BRWinputs
A list containing the necessary inputs for the BRW model estimation:
Cent_Measure
: Determines whether "Mean" or "Median"-unbiased estimation is desired.gamma
: Numeric. Adjustment parameter between 0 and 1. Default is 0.5.N_iter
: Integer. Number of iterations for the stochastic approximation algorithm after burn-in. Default is 5,000.N_burn
: Integer. Number of burn-in iterations. Default is 15B
: Integer. Number of bootstrap samples per iteration for calculating the noisy measure of the biased estimator's mean or median. Default is 50.check
: Logical. Indicates whether to perform a closeness check. Default is TRUE.B_check
: Integer. Number of bootstrap samples for the closeness check. Default is 100,000.Eigen_rest
: Numeric. Restriction on the largest eigenvalue under the P-measure. Default is 1.
- RiskFactors
A numeric matrix (T x F) representing the time series of risk factors.
- Economies
A character vector containing the names of the economies included in the system.
- FactorLabels
A list of character vectors with labels for all variables in the model.
- GVARinputs
List. Inputs for GVAR model estimation (see
GVAR
function). Default is NULL.- JLLinputs
List. Inputs for JLL model estimation (see
JLL
function). Default is NULL.- verbose
verbose Logical flag controlling function messaging. Default is TRUE.
Value
Bias-corrected VAR parameters based on the framework of Bauer, Rudebusch and Wu (2012). The list contains:
KOZ_BC
: estimated intercept (F x 1);K1Z_BC
: estimated feedback matrix (F x F);SSZ_BC
: estimated variance-covariance matrix (F x F);dist
: root mean square distance (scalar);
References
Bauer, Rudebusch and, Wu (2012). "Correcting Estimation Bias in Dynamic Term Structure Models"
An R implementation inspired by the methodology described therein. Related Matlab routines
are available on Cynthia Wu's website (https://sites.google.com/view/jingcynthiawu/).
Examples
# \donttest{
data(CM_Factors)
Factors <- t(RiskFactors[1:7,])
BRWinputs <- list(Cent_Measure = "Mean", gamma = 0.4, N_iter = 1000, N_burn = 100,
B = 10, check = 1, B_check = 5000)
Economies <- "China"
N <- 3
ModelType <- "JPS original"
FactorLabels <- NULL
BRWpara <- Bias_Correc_VAR(ModelType, BRWinputs, Factors, Economies, FactorLabels)
#> iteration: 100 / 1099
#> iteration: 200 / 1099
#> iteration: 300 / 1099
#> iteration: 400 / 1099
#> iteration: 500 / 1099
#> iteration: 600 / 1099
#> iteration: 700 / 1099
#> iteration: 800 / 1099
#> iteration: 900 / 1099
#> iteration: 1000 / 1099
#> Root mean square distance: 0.048839
#> ... Done!
# }