Computes the transition matrix required in the estimation of the GVAR model
Source:R/Transition_Matrix.R
Transition_Matrix.RdComputes the transition matrix required in the estimation of the GVAR model
Arguments
- t_First
character. Sample starting date (format: yyyy).
- t_Last
character. Sample ending date (format: yyyy).
- Economies
character vector. Names of the
Ceconomies included in the system.- type
character. Method for computing interdependence. Possible options:
"Time-varying": Computes time-varying interdependence and returns weight matrices for each year."Sample Mean": Returns a single weight matrix with average weights over the sample period.Specific year (e.g., "1998", "2005"): Computes time-invariant interdependence for the specified year.
- DataConnectedness
list or data frame. Data used to compute the transition matrix (e.g., trade flows).
Value
matrix or list of matrices. Time-varying or time-invariant transition matrix depending on 'type'.
Details
If there is missing data for any country in a particular year, the transition matrix will include only NAs.
Examples
t_First <- "2006"
t_Last <- "2019"
Economies <- c("China", "Brazil", "Mexico", "Uruguay")
type <- "Sample Mean"
# Load data if Connectedness data from excel, otherwise use pre-saved data
GetExcelData <- FALSE
if (GetExcelData) {
if (!requireNamespace("readxl", quietly = TRUE)) {
stop(
"Please install package \"readxl\" to use this feature.",
call. = FALSE
)
DataPath <- system.file("extdata", "TradeData.xlsx", package = "MultiATSM")
tab_names_Trade <- readxl::excel_sheets(DataPath)
list_all_Trade <- suppressMessages(lapply(tab_names_Trade, function(x) {
readxl::read_excel(path = DataPath, sheet = x)
}))
names(list_all_Trade) <- tab_names_Trade
L <- length(list_all_Trade)
for (i in 1:L) {
Countries <- list_all_Trade[[i]][[1]]
list_all_Trade[[i]] <- as.data.frame(list_all_Trade[[i]][, -1])
rownames(list_all_Trade[[i]]) <- Countries
}
DataConnectedness <- list_all_Trade
}
} else {
data(TradeFlows)
DataConnectedness <- TradeFlows
}
W_mat <- Transition_Matrix(t_First, t_Last, Economies, type, DataConnectedness)