Gather data of several countries in a list. Particularly useful for GVAR-based setups (Compute "GVARFactors")
Source:R/DatabasePrep.R
DatabasePrep.RdGather data of several countries in a list. Particularly useful for GVAR-based setups (Compute "GVARFactors")
Usage
DatabasePrep(
t_First,
t_Last,
Economies,
N,
FactorLabels,
ModelType,
Macro_FullData,
Yields_FullData,
Wgvar = NULL
)Arguments
- t_First
character. Start date of the sample period in the format yyyy-mm-dd.
- t_Last
character. End date of the sample period in the format yyyy-mm-dd.
- Economies
character vector. Names of the
Ceconomies included in the system.- N
positive integer. Number of country-specific spanned factors per country.
- FactorLabels
list. Labels for all variables present in the model, as returned by
LabFac.- ModelType
character. Model type to be estimated. Permissible choices: "JPS original", "JPS global", "GVAR single", "JPS multi", "GVAR multi", "JLL original", "JLL No DomUnit", "JLL joint Sigma".
- Macro_FullData
list. Full set of macroeconomic data, as returned by
Load_Excel_Data.- Yields_FullData
list. Full set of bond yield data, as returned by
Load_Excel_Data.- Wgvar
GVAR transition matrix. For GVAR models, either a matrix (
C x C) for fixed weights, or a named list of matrices for time-varying weights. Default is NULL. Required for GVAR models.
Value
List containing the risk factor set for all countries and global factors. Particularly useful for GVAR-based models.
General Notation
C: number of countries in the system.N: number of country-specific spanned factors.
Examples
# Load data from excel
macro_data <- Load_Excel_Data(system.file("extdata", "MacroData.xlsx", package = "MultiATSM"))
yields_data <- Load_Excel_Data(system.file("extdata", "YieldsData.xlsx", package = "MultiATSM"))
trade_data <- Load_Excel_Data(system.file("extdata", "TradeData.xlsx", package = "MultiATSM"))
#> New names:
#> • `` -> `...1`
#> New names:
#> • `` -> `...1`
#> New names:
#> • `` -> `...1`
#> New names:
#> • `` -> `...1`
#> New names:
#> • `` -> `...1`
# Adjust trade data
trade_data <- lapply(trade_data, function(df) {
countries <- df[[1]]
df <- as.data.frame(df[-1])
rownames(df) <- countries
df
})
# Define features of interest
ModelType <- "GVAR multi"
Economies <- c("China", "Uruguay", "Russia")
GlobalVar <- c("GBC", "CPI_OECD")
DomVar <- c("Eco_Act", "Inflation")
N <- 3
t0 <- "2006-09-01"
tF <- "2019-01-01"
# Compute some inputs
FactorLabels <- LabFac(N, DomVar, GlobalVar, Economies, ModelType)
Wgvar <- Transition_Matrix(
t_First = "2006", t_Last = "2019", Economies,
type = "Sample Mean", trade_data
)
# Compute GVARFactors
GVARFactors <- DatabasePrep(
t0, tF, Economies, N, FactorLabels, ModelType, macro_data,
yields_data, Wgvar
)