Skip to contents

Generates inputs necessary to build the likelihood function for the ATSM model

Usage

InputsForOpt(
  InitialSampleDate,
  FinalSampleDate,
  ModelType,
  Yields,
  GlobalMacro,
  DomMacro,
  FactorLabels,
  Economies,
  DataFrequency,
  GVARlist = NULL,
  JLLlist = NULL,
  WishBRW = FALSE,
  BRWlist = NULL,
  UnitYields = "Month",
  CheckInputs = TRUE,
  BS_Adj = FALSE,
  verbose = TRUE
)

Arguments

InitialSampleDate

Start date of the sample period in the format "dd-mm-yyyy"

FinalSampleDate

End date of the sample period in the format "dd-mm-yyyy"

ModelType

A character vector indicating the model type to be estimated. Available options: "JPS original", "JPS global", "GVAR single", "JPS multi", "GVAR multi", "JLL original", "JLL No DomUnit", "JLL joint Sigma".

Yields

A numerical matrix with time series of yields (J x T or CJ x T)

GlobalMacro

A numerical matrix with time series of the global risk factors (G x T)

DomMacro

A numerical matrix with time series of the country-specific risk factors for all C countries (CM x T)

FactorLabels

A list of character vectors with labels for all variables in the model.

Economies

A character vector containing the names of the economies included in the system.

DataFrequency

A character vector specifying the frequency of the data. Available options are: "Daily All Days", "Daily Business Days", "Weekly", "Monthly", "Quarterly", or "Annually".

GVARlist

A list containing the necessary inputs for the estimation of GVAR-based models

JLLlist

A list of necessary inputs for the estimation of JLL-based models. If the chosen model is "JLL original" or "JLL joint Sigma", then a dominant unit economy must be chosen. Otherwise, this list must be set as 'None'.

WishBRW

Logical. Whether to estimate the physical parameter model with bias correction, based on the method by Bauer, Rudebusch and Wu (2012). Default is FALSE.

BRWlist

List of necessary inputs for performing the bias-corrected estimation.

UnitYields

A character string indicating the maturity unit of yields. Options are: "Month" for yields expressed in months, or "Year" for yields expressed in years. Default is "Month".

CheckInputs

Logical. Whether to perform a prior check on the consistency of the provided input list. Default is TRUE.

BS_Adj

Logical. Whether to adjust the global series for the sepQ models in the Bootstrap setting. Default is FALSE.

verbose

Logical flag controlling function messaging. Default is TRUE.

Value

An object of class 'ATSMModelInputs' containing the necessary inputs for performing the model optimization.

Available Methods

- `print(object)` - `summary(object)`

Examples

# \donttest{
# Example 1:
data(CM_GlobalMacroFactors)
data(CM_DomMacroFactors)
data(CM_Yields)

ModelType <- "JPS original"
Economies <- "Mexico"
t0 <- "01-05-2007" # Initial Sample Date (Format: "dd-mm-yyyy")
tF <- "01-12-2018" # Final Sample Date (Format: "dd-mm-yyyy")
N <- 3
GlobalVar <- c("Gl_Eco_Act") # Global Variables
DomVar <- c("Eco_Act") # Domestic Variables
FactorLabels <- LabFac(N, DomVar, GlobalVar, Economies, ModelType)

DataFreq <- "Monthly"

ATSMInputs <- InputsForOpt(t0, tF, ModelType, Yields, GlobalMacroVar, DomesticMacroVar,
                             FactorLabels, Economies, DataFreq, CheckInputs = FALSE)
#> 1) PREPARING INPUTS FOR THE ESTIMATION OF THE MODEL: JPS original . SAMPLE PERIOD: 01-05-2007 - 01-12-2018
#> 1.1) Constructing the time-series of the risk factors
#> 1.2) Estimating model P-dynamics parameters:
#> - Without the bias-correction procedure 

# Example 2:
LoadData("CM_2024")

ModelType <- "GVAR multi"

Economies <- c("China", "Brazil", "Mexico", "Uruguay")
t0 <- "01-05-2007" # InitialSampleDate (Format: "dd-mm-yyyy")
tF <- "01-12-2019" # FinalSampleDate (Format: "dd-mm-yyyy")
N <- 2
GlobalVar <- c("Gl_Eco_Act", "Gl_Inflation") # Global Variables
DomVar <- c("Inflation") # Domestic Variables
FactorLabels <- LabFac(N, DomVar, GlobalVar, Economies, ModelType)

DataFreq <- "Monthly"
GVARlist <- list(VARXtype = "unconstrained", W_type = "Sample Mean",
                 t_First_Wgvar = "2007", t_Last_Wgvar = "2019", DataConnectedness = TradeFlows)

ATSMInputs <- InputsForOpt(t0, tF, ModelType, Yields, GlobalMacroVar, DomesticMacroVar,
                           FactorLabels, Economies, DataFreq, GVARlist, CheckInputs = FALSE)
#> 1) PREPARING INPUTS FOR THE ESTIMATION OF THE MODEL: GVAR multi . SAMPLE PERIOD: 01-05-2007 - 01-12-2019
#> 1.1) Constructing the time-series of the risk factors
#> 1.2) Estimating model P-dynamics parameters:
#> - Without the bias-correction procedure 

# Example 3:
if (requireNamespace('neldermead', quietly = TRUE)) {
LoadData("CM_2024")

ModelType <- "JLL original"

Economies <- c("China", "Brazil", "Uruguay")
t0 <- "01-05-2007" # InitialSampleDate (Format: "dd-mm-yyyy")
tF <- "01-12-2019" # FinalSampleDate (Format: "dd-mm-yyyy")
N <- 2
GlobalVar <- c("Gl_Eco_Act", "Gl_Inflation") # Global Variables
DomVar <- c("Eco_Act", "Inflation") # Domestic Variables
FactorLabels <- LabFac(N, DomVar, GlobalVar, Economies, ModelType)

JLLinputs <- list(DomUnit = "China")

DataFrequency <- "Monthly"

ATSMInputs <- InputsForOpt(t0, tF, ModelType, Yields, GlobalMacroVar, DomesticMacroVar,
                           FactorLabels, Economies, DataFreq, JLLlist = JLLinputs,
                           CheckInputs = FALSE)
} else {
 message("skipping functionality due to missing Suggested dependency")
}
#> 1) PREPARING INPUTS FOR THE ESTIMATION OF THE MODEL: JLL original . SAMPLE PERIOD: 01-05-2007 - 01-12-2019
#> 1.1) Constructing the time-series of the risk factors
#> 1.2) Estimating model P-dynamics parameters:
#> - Without the bias-correction procedure 
#> JLL-based setup in progress: Estimating the variance-covariance matrix numerically.
#>                              This may take some time. 
# }