Perform the optimization of the log-likelihood function of the chosen ATSM
Source:R/Optimization.R
Optimization.RdPerform the optimization of the log-likelihood function of the chosen ATSM
Usage
Optimization(
MLEinputs,
StatQ,
DataFreq,
FactorLabels,
Economies,
ModelType,
tol = 1e-04,
EstType = c("BFGS", "Nelder-Mead"),
TimeCount = TRUE,
BS_outputs = FALSE,
verbose = TRUE
)Arguments
- MLEinputs
list. Contains the inputs for building the log-likelihood function (see
InputsForOpt).- StatQ
A logical value indicating whether to impose that the largest eigenvalue under Q is strictly smaller than 1. Set TRUE to impose this restriction.
- DataFreq
character vector specifying the data frequency. Available options: "Daily All Days", "Daily Business Days", "Weekly", "Monthly", "Quarterly", "Annually".
- FactorLabels
list. Labels for all variables present in the model, as returned by
LabFac.- Economies
character vector. Names of the
Ceconomies included in the system.- ModelType
character. Model type to be estimated. Permissible choices: "JPS original", "JPS global", "GVAR single", "JPS multi", "GVAR multi", "JLL original", "JLL No DomUnit", "JLL joint Sigma".
- tol
numeric. Convergence tolerance. The default is 1e-4.
- EstType
Available options are"BFGS" and/or "Nelder-Mead".
- TimeCount
Logical. If TRUE, computes the time required for model estimation. Default is TRUE.
- BS_outputs
Logical. If TRUE, generates a simplified output list in the bootstrap setting. Default is FALSE.
- verbose
Logical flag controlling function messaging. Default is TRUE.
Value
An object of class 'ATSMModelOutputs' containing model outputs after the optimization of the chosen ATSM specification.
References
Candelon, C. and Moura, R. (2024). “A Multicountry Model of the Term Structures of Interest Rates with a GVAR.” Journal of Financial Econometrics 22 (5): 1558–87.
Jotikasthira, C; Le, A. and Lundblad, C (2015). “Why Do Term Structures in Different Currencies Co-Move?” Journal of Financial Economics 115: 58–83.
Joslin, S,; Priebsch, M. and Singleton, K. (2014). “Risk Premiums in Dynamic Term Structure Models with Unspanned Macro Risks.” Journal of Finance 69 (3): 1197–1233.
Joslin, S., Singleton, K. and Zhu, H. (2011). "A new perspective on Gaussian dynamic term structure models". The Review of Financial Studies.
Le, A. and Singleton, K. (2018). "A Small Package of Matlab Routines for the Estimation of Some Term Structure Models." Euro Area Business Cycle Network Training School - Term Structure Modelling.
Examples
LoadData("CM_2024")
ModelType <- "JPS original"
Economy <- "Brazil"
t0 <- "01-05-2007" # Initial Sample Date (Format: "dd-mm-yyyy")
tF <- "01-12-2018" # Final Sample Date (Format: "dd-mm-yyyy")
N <- 1
GlobalVar <- "Gl_Eco_Act" # Global Variables
DomVar <- "Eco_Act" # Domestic Variables
DataFreq <- "Monthly"
StatQ <- FALSE
FacLab <- LabFac(N, DomVar, GlobalVar, Economy, ModelType)
ATSMInputs <- InputsForOpt(t0, tF, ModelType, Yields, GlobalMacro, DomMacro,
FacLab, Economy, DataFreq,
CheckInputs = FALSE, verbose = FALSE
)
OptPara <- Optimization(ATSMInputs, StatQ, DataFreq, FacLab, Economy, ModelType, verbose = FALSE)